6x^2+23x=36

Simple and best practice solution for 6x^2+23x=36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2+23x=36 equation:


Simplifying
6x2 + 23x = 36

Reorder the terms:
23x + 6x2 = 36

Solving
23x + 6x2 = 36

Solving for variable 'x'.

Reorder the terms:
-36 + 23x + 6x2 = 36 + -36

Combine like terms: 36 + -36 = 0
-36 + 23x + 6x2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-6 + 3.833333333x + x2 = 0

Move the constant term to the right:

Add '6' to each side of the equation.
-6 + 3.833333333x + 6 + x2 = 0 + 6

Reorder the terms:
-6 + 6 + 3.833333333x + x2 = 0 + 6

Combine like terms: -6 + 6 = 0
0 + 3.833333333x + x2 = 0 + 6
3.833333333x + x2 = 0 + 6

Combine like terms: 0 + 6 = 6
3.833333333x + x2 = 6

The x term is 3.833333333x.  Take half its coefficient (1.916666667).
Square it (3.673611112) and add it to both sides.

Add '3.673611112' to each side of the equation.
3.833333333x + 3.673611112 + x2 = 6 + 3.673611112

Reorder the terms:
3.673611112 + 3.833333333x + x2 = 6 + 3.673611112

Combine like terms: 6 + 3.673611112 = 9.673611112
3.673611112 + 3.833333333x + x2 = 9.673611112

Factor a perfect square on the left side:
(x + 1.916666667)(x + 1.916666667) = 9.673611112

Calculate the square root of the right side: 3.110242935

Break this problem into two subproblems by setting 
(x + 1.916666667) equal to 3.110242935 and -3.110242935.

Subproblem 1

x + 1.916666667 = 3.110242935 Simplifying x + 1.916666667 = 3.110242935 Reorder the terms: 1.916666667 + x = 3.110242935 Solving 1.916666667 + x = 3.110242935 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.916666667' to each side of the equation. 1.916666667 + -1.916666667 + x = 3.110242935 + -1.916666667 Combine like terms: 1.916666667 + -1.916666667 = 0.000000000 0.000000000 + x = 3.110242935 + -1.916666667 x = 3.110242935 + -1.916666667 Combine like terms: 3.110242935 + -1.916666667 = 1.193576268 x = 1.193576268 Simplifying x = 1.193576268

Subproblem 2

x + 1.916666667 = -3.110242935 Simplifying x + 1.916666667 = -3.110242935 Reorder the terms: 1.916666667 + x = -3.110242935 Solving 1.916666667 + x = -3.110242935 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.916666667' to each side of the equation. 1.916666667 + -1.916666667 + x = -3.110242935 + -1.916666667 Combine like terms: 1.916666667 + -1.916666667 = 0.000000000 0.000000000 + x = -3.110242935 + -1.916666667 x = -3.110242935 + -1.916666667 Combine like terms: -3.110242935 + -1.916666667 = -5.026909602 x = -5.026909602 Simplifying x = -5.026909602

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.193576268, -5.026909602}

See similar equations:

| -25z=15+16z+22z | | 192r^2-75= | | -1/2y=3/2-8/9+2/7y | | -(x+5)3+2x=-5x+2(3x-4)+5 | | 12+5x=9x | | 33x=6x | | -1/2(2x+6)= | | 3(x+1)=2(x+7) | | 4x+3x+1=1+5x+2x | | 11c+3(-5c+4d)= | | 9+y=10 | | 3x^2-20x+1=0 | | 3x-1=4x-3-x | | 6+y=11 | | -6z/5-8/5=8/3 | | -(14y-35)-(-13y+39)-35y=-(-20y-23) | | 0.5(4-2)+1=2+x+1 | | y-5/2=-7/3 | | 46y+7y^2=21 | | -15+2.75(1/4+3)= | | 5(x+2)=8x+2(x-5) | | 3[x]=0 | | 2/7x=10 | | f(x)=(3x+7)(4x+1) | | y-5/2=-7/2 | | 1/4+3= | | 2/7x | | 2[x]=2 | | X+1/5=11 | | -2[x]=16 | | 2x+7/5=0 | | -(-6v-w)-3(-w-6v)= |

Equations solver categories